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From the Bethe-Salpeter equation for the two-particle (proton-electron) Green function, an ef-
fective Schrédinger wave equation can be derived for a hydrogen atom in a hydrogen plasma, which
describes the perturbation of atomic energy levels and eigenstates by many-particle plasma effects
(Pauli blocking, exchange and dynamic self-energy, and interaction-potential correction due to dy-
namic screening). Taking full account of dynamic screening by the random-phase approximation
dielectric function, we solved the effective wave equation for nondegenerate plasmas. For bound
atomic states, the plasma effects nearly compensate one another and the energy levels depend only
weakly on density. In contrast, the lowering of the continuum edge is not diminished by such com-
pensation, so that the bound states successively merge into the continuum with increasing plasma
density. As our results show, reliable calculations have to incorporate dynamic screening, since the
use of static screening (which greatly facilitates calculations) may lead to substantial errors, even

at low densities.

PACS number(s): 52.20.—j, 52.25.Jm, 05.30.—d

I. INTRODUCTION

Dense (nonideal) plasmas are of scientific and tech-
nical interest. We mention dense astrophysical plasmas
and experimental investigations in connection with laser
or ion beam produced fusion plasmas (see, e.g., [1]). In
such plasmas, the mean interaction energy of charged
particles may be of the same order as their kinetic energy
and we expect that various features deviate esssentially
from those of low-density plasmas. In this paper, we fo-
cus attention on two-particle properties in dense plasmas
and in particular investigate hydrogen atomic states in
hydrogen plasmas.

For atoms in a plasma, there are no strictly stationary
states. Due to collisions with charged plasma particles (in
particular electrons), all atomic states, even the ground
state, have a finite lifetime, which depends on plasma
density and temperature. This is equivalent to a broad-
ening (or imaginary part) of atomic energy eigenvalues
and will in general be accompanied by an energy level
shift as well. As one well-known result, spectral lines
show plasma (Stark) broadening and may show a shift
if the corresponding upper and lower atomic energy lev-
els are shifted by different amounts. We note, however,
that “upper-lower state interference” or “vertex contri-
butions” play an additional role in this connection, be-
side the self-energy corrections of single-particle energies
(dressed particles), in particular for hydrogen lines.

For highly exited states, the perturbation by the sur-
rounding plasma will have drastic consequences since
states with a radius of the order of the mean interparti-
cle distance will certainly cease to exist as atomic states
in a plasma. Thus we expect the continuum edge of the
atomic energy spectrum to be lowered in a plasma, as
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compared to a free unperturbed atom. By this, the en-
ergy spectrum of hydrogen atoms, for example, will be
reduced to a finite number of levels.

The theoretical treatment of plasma effects on atomic
structure is difficult because this is a genuine many-
particle problem: Due to the long range of the Coulomb
potential, an atom is always under the simultaneous in-
fluence of many plasma electrons and ions, which partly
shield or screen one another. Thus many-particle theory
is required. The work presented here attempts to yield
improved results for plasma effects on atomic structure
by use of the Green-function method for charged particle
systems, which was developed as a powerful tool during
the past few decades [2—4].

Previous attempts [5—-12] took account of the dynamic
character of the shielding of the Coulomb interaction in
this connection by using simple or highly refined approx-
imations, but dealt with semiconductor (electron-hole)
plasmas and excitonic (instead of atomic) energy levels or
optical spectra. Another recent approach [13-16] did deal
with hydrogen plasmas and atoms, but was restricted to
static Debye screening from the beginning, which greatly
simplified the problem. In contrast, the present work
is concerned with hydrogen atoms and plasmas and ac-
counts for dynamic screening. With a view to present
experimental possibilities, the treatment is confined to
nondegenerate plasmas, but this is not an essential limi-
tation.

II. EFFECTIVE HAMILTONIAN

In the framework of the Green-function method [4],
properties of bound two-particle states are described by
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the two-particle Green function g;., which is to be deter-
mined from the Bethe-Salpeter equation

gie(121'2") = g;(11')g.(22') (1)
+ik / d3d4d3d4 g;(13)g.(24)
x K;e(3434)g:c(341'2").

Here 1 is an abbreviation for (r1,¢1), etc. The one-
particle Green functions g;, g are solutions of the Dyson
equation. The two-particle Green function is coupled
to the three-particle Green function, and so on, so that
an infinite hierarchy of equations results. In the Bethe-
Salpeter equation (1), this coupling to the higher-order
Green functions is hidden in the effective interaction
kernel K;.. To decouple the hierarchy, but still retain
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the most important many-particle effects, we replace the
effective interaction by the dynamically screened two-
particle potential

Kic(34,34) = V2(34)6(33)5(44). (2)

With this approximation, the Bethe-Salpeter equation
for g;e yields an effective Schrodinger wave equation for
an ion (proton)-electron pair in the plasma.

A. Effective wave equation

The Bethe-Salpeter equation (1) taken in the particle-
particle channel (t; = tz, t} = t}) is transformed into the
momentum-Matsubara representation [2,4] according to

12, 12) = i 3 [

i )
X exp [E(Pr’l‘ﬁ— p2-ry—pi ! — Pz""‘z')] gie(P1,P2, P!, P2, 2y, 251),

a

for instance [z2 = inv/(AB) + pa, v is odd, p, is the
chemical potential, a = i,e,and 8 = 1/(kgT)]. Then, the
sums over the Matsubara frequencies are performed and
the frequency-dependent functions are continued into the
complex plane. In the course of this, the two-frequency
Green function is replaced by a single-frequency Green
function by means of the Shindo approximation [17-19]

gie(P1 — @,P2 + 4, P3,Pa, 24, Q¥ — 21)
_ —ihB[gi(p1 — q,2}) + ge(P2 + ¢, 0¥ — 2})]
X [9i(p1 — @,280) + ge(p2 + @, Q¢ — 2i)]
Xgie(P1 — @, P2 + Q, P3, Pa, V) (4)

[ = imA/(AB) + pi + pe = 25 + 25, A even]. This is
exact for static potentials V2 only, while its usefulness
for dynamic screening is uncertain and, most probably,
limited to weak retardation effects. Use of the Shindo
approximation at this point in the calculation is common
practice in all the work done in the field, but it is certainly
a possible source of error.

The Hermitian part of the resulting homogeneous
Bethe-Salpeter equation is the effective Schrodinger wave
equation for the wave function ¥ of an ion-electron pair
in the many-particle system [4,20], which provides the
starting point of our work:

J

(2nh)12

exp [—iz} (t1 — t}) — 128 (t2 — t3)]

3)

[Hie(pi,perw) - hw] \I’(Pi,pe,W) = 07 (5)
Hie(pi, pe,w) = HY (pi, Pe) + Re H(pi, pe, w + i0).

Hi(g) is the Hamiltonian of the isolated two-particle

Coulomb problem, while Re Hipel , the real part of the
plasma Hamiltonian, which occurs in the inhomogeneous
Bethe-Salpeter equation, describes the influence of the
surrounding plasma on the two-particle complex. As a
consequence of dynamic screening, the plasma Hamilto-
nian depends on w and is different for different energy
eigenvalues E = Aw, so that Eq. (5) is not just an eigen-
value problem, but has to be solved self-consistently with
respect to w. The solutions of the effective Schrodinger
equation determine the two-particle Green function g;.,
the real eigenvalues corresponding to d-like singularities
of the two-particle spectral function [20].

Here we consider the wave equation for an atom at rest
(vanishing total momentum) in a nondegenerate plasma.
In addition, we restrict plasma effects to the lowest order
of plasma density by neglecting all higher-order terms
except those that occur through the dielectric function.
With these approximations, the effective wave equation
for an atom in a plasma becomes [4]

2 3 3
(2~ 1) b0 + [ V@ + a0 = [ V@) o) + L) ¥ip +

—[filp+q) + fe(p+ )] ¥(p,w)}

o

B AV (@2, 0) [B(p + 4.0) — ¥(p,0)] (©)
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with the effective potential correction

av@pe) =P [ P mve )
% l: nB(w') +1
hw-w') — Ei(p) — Ee(p + q)
np(w’) +1

+h(w—w’) —E;(p+4q) — Ee(p)] 0

given by a principal value integral, the Bose function
np(w) = (e#™ —1)~1, and the Fermi functions f; and f,
which become Maxwell-Boltzmann distributions (propor-
tional to the plasma density n. = n;) for nondegenerate
plasmas. The wave function 1 relates to relative motion
and m;. is the reduced mass of the ion-electron pair. The
quasiparticle energies of electrons and ions E. and E;
are discussed in more detail in Sec. IIB. The connection
of the plasma-screened potential V2, Eq. (2), with the
“bare” Coulomb potential V;C is given by the retarded
(longitudinal) dielectric function e(k,w) = e(k,w + 30),
which is traditionally expressed as a function of a wave
vector, not a momentum:

VS(q
Vi(gw) = el

e(gq/h,w)’
The approximations we used for the dielectric function
are specified in Sec. IIC.

In Eq. (6), the many-body effects are contained on
the right-hand side (rhs), which is proportional to the
plasma density in the low-density limit (via f;, fe,
and Ime~?!), so that the usual Schrodinger wave equa-
tion for the unperturbed Coulomb problem is recovered
for vanishing plasma density. There are four different
kinds of many-body effects: general many-particle effects
(first integral on the rhs); namely, phase space occupa-
tion (Pauli blocking) and exchange (Hartree-Fock) self-
energy; and effects connected with the plasma screening
of the Coulomb potential (second integral); namely, the
dynamically screened effective potential correction and
dynamic (Montroll-Ward) self-energy. We note that the
effective potential correction AVSE given by Eq. (7) is
more complicated than V2 — V,C.

The effective wave equation (5) or (6) yields real energy
eigenvalues F = fuw, because it corresponds to the “real”
Hermitian part of the homogeneous Bethe-Salpeter equa-
tion. The imaginary parts I" of the energy eigenvalues are
determined by perturbation theory (Sec. IIE).

(8)

B. Single-particle self-energies and the two-particle
continuum edge

The single-particle energies in the potential correction
Eq. (7) for the effective Schrédinger equation (6) are
quasiparticle energies. They differ by the single-particle
self-energies from the kinetic energies of free particles and
are self-consistent solutions of

Bulp) = 1+ Salpo = Ealp)/H), a=ise.  (9)
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In correspondence with the approximation we made for
the effective interaction K. in Eq. (2), we also neglect
the vertex corrections for the self-energy [4]. This leads
to the V' approximation

Ta(12) = iAVE, (12)g4(12). (10)

The additional Hartree contribution found in the general
case vanishes for an electrically neutral plasma [4]. Af
ter transformation into the momentum-Matsubara rep-
resentation and continuation into the complex frequency
plane, the single-particle self-energy becomes

d3q d(hw)
(2wh)3

1+ng(w') - fa(lp+q)
Aw—w')—E.(p+q)’

Za(p,w) = =T (p) + P Im V', (g, ')

(11)

The second term is usually referred to as the Montroll-
Ward contribution. In our calculation, the Fermi func-
tion in the nominator is neglected because f,Ime~?! is
second order in the density. The first term is the Hartree-

Fock contribution

d3
S ) =~ [ e Ve e+ )
2,2 2
_ _2nh%e2n.f 1F1(1 3 _2ﬁp ) ’

4Awegmyg 72’ Mg (12)
the last expression being valid in the nondegenerate case.

As far as we know, self-consistent solutions of the
strongly nonlinear integral equation (9) are not avail-
able for the case of large ion-electron mass ratios m;/me.,
and we did not succeed in finding such a solution in the
work reported here either. However, as long as we are
concerned with the plasma effects on hydrogenic bound
states in only the lowest order of plasma density, this is
not a serious problem.

The electron and ion self-energies vanish for vanish-
ing plasma density. If they were included in the quasi-
particle energies in the resonance denominators of the po-
tential correction Eq. (7), they would give rise to density-
dependent contributions to this quantity. But Ime™! in
the nominator is already of first order in the density,
so these are corrections of higher density order and it
would not be consistent to retain them because other
terms beyond first order of density are neglected in the
effective Schrodinger equation (6). Therefore, we took
the quasiparticle energies FE;, E. to be the kinetic en-
ergies in Eq. (7). For the same reason, the energy Aw
in Eq. (7), which should strictly be obtained by self-
consistent solution of the effective Schrédinger equation
(6), is taken as unperturbed atomic energy eigenvalue ES
of the Coulomb problem. We note that this facilitates the
numerical evaluation because the continuous dependence
of the effective Hamiltonian on w is replaced by a “step
function.”

The arguments given above apply to bound states with
ES # 0. For the continuum edge, with unperturbed
eigenvalue EC = ES _, = 0, things may be (and in fact

cont



5390

are) different. To determine the position of the contin-
uum edge, we insert the asymptotic wave function of scat-
tering states ¥(p) — (2wh)35(p) into the effective wave
equation (6) and obtain

Econt = Ez(p = 0) + Ee(P = 0)7 (13)

where the quasiparticle energies reduce to the self-
energies for vanishing momentum p = 0. We emphasize
that the derivation of this result requires the quasiparti-
cle energies to be exact solutions of Eq. (9). Even if they
are only needed for p = 0 in Eq. (13), their strict deter-
mination requires the self-consistent solution of Eq. (9)
for all momenta, due to the appearance of E,(p+gq) in
the resonance denominator of the integrand of Eq. (11).

Since the single-particle self-energies are not known,
as stated above, the continuum edge can only be deter-
mined approximatively. Combining Egs. (9), (11), and
(13) yields an equation for E.on¢ that is suitable as a
starting point to derive approximations

Eeont = ZIF(0) + =HF (0)
xIm V% (g, w) [ oo ;;5 Ewgizro;—Ee(q)
e ) o)) "

At first sight, it would seem fully consistent with the
approximations used for the bound states to simply ne-
glect the self-energy contributions to the quasiparticle
energies in this equation and to replace E.ont by its un-
perturbed value of 0 in the resonance denominators of
the rhs, which amounts to the use of the well-known ap-
proximation [4]

p? p?
2 ~ — 15
Ea(p) Zma+)3a(’2mah) (15)
in Eq. (13). However, this does not produce a realis-

tic dependence of the hydrogen atom continuum edge
on the plasma density because the results predict, for
instance, that none of the Balmer spectral lines would
be observable at arc plasma densities because the up-
per states would already be continuum states, i.e., the
continuum edge decreases much too fast with increasing
plasma density. Analytical results, which are available
for small momentum to the lowest orders of % [4], indi-
cate that this steep decrease of the continuum edge is a
particular problem for large values of m;/me..
Therefore, it is necessary to employ an improved ap-
proximation. In our work, we stuck to the approximation
of E,(p) by the kinetic energy p%/(2m,) in Eq. (14), but
solved the equation for E..nt by iteration. As a result,
the steep decrease of the continuum edge with increasing
density (at fixed temperature) is drastically reduced and
the values obtained in this way are close to the values
we can determine from the behavior of the bound states
at certain discrete plasma densities; cf. Sec. IVB. We
take this as an indication that the additional effects that

J. SEIDEL, S. ARNDT, AND W. D. KRAEFT 32

are brought about by the self-energy contribution to the
quasiparticle energy will not be too important in this con-
nection. Nevertheless, a truly consistent treatment has to
include both effects since we expect ¥; and X, as well as
Econt to be proportional to /n. at low plasma density.
Further investigation of the single-particle self-energies
(in particular of the electronic self-energy for large ion-
electron mass ratio) is required for this purpose.

C. Dielectric function

Important plasma effects in the effective wave equation
(7) are connected with the dielectric function. In terms
of the polarization function II, the dielectric function is

d*pd3q
e(k,w) =1 + az,b/(z—ﬂ'fi)—e Vacl:,(hk) (16)

XHab(P“hk,Q+hk,p,Qaw + 7/0)’

where k is a wave vector (not a momentum). We used the
polarization function in the random-phase approximation
(RPA),

TIRPA (1234) = —8,094(14)95(23), (17)

which again amounts to the neglect of vertex corrections.
The corresponding RPA dielectric function is

Vaa () [fa(g) — fa(Pp+q)]
( "" 1+Z /(27rh3E (@) —Eo(p+q)+hw + 140’

(18)

Since we always refer to the RPA dielectric function (or
limits of it) here, the corresponding index on € is omitted.
For nondegenerate plasmas, evaluation of the integral is
possible [21] and yields the “full” dynamic dielectric func-
tion

elk,w) =1— ﬁ’fﬁ [w(w +y) —w(z—y) (19)

4 k2 2y
w(sz +y/s) — w(sz — y/s)
* 2y/s ]

m;
§ = 5
Me

k=1/rp = v/2n.e2B/eo , we = v/€2n./(come),

rp being the Debye length and w,. the electron plasma
frequency. The function w is closely related to the com-
plex error function [22]

with

r2k203
8me

_ lw/we

T2 k/k’

w(z) = exp(—2?) erfc(—iz) . (20)

For real argument z, its real part is Rew(z) = exp(—z?2)
and its imaginary part can be expressed in terms of Daw-
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son’s integral F' or the confluent hypergeometric function
1F 1 as

—\—g_zlmw(:c)=/ dtet’~* = F F(z)=z1F(1,3; -2?).
0

(21)

In the limit & — 0, i.e., y — 0 in Eq. (19), the full dielec-
tric function becomes the “classical” dielectric function

ealk,w) =1+ — o {1 + z\/z_ [zw(z) — sww(s:v)]} . (22)

The static limit w — 0, i.e., z — 0 in Eq. (19), of the full
dielectric function is

F(y) , F(y/s)
sst(k)—e(kO)—1+k22[ ” +—§7s— , o (23)
while the static limit of the classical dielectric function
(R — 0, w — 0) is the “Debye limit”

ep(k) = ea(k,0) = 1+ (k/k)%. (24)
For both £4 and ep the imaginary parts vanish. Note
that the static full dielectric function does not lead to
Debye screening, but contains additional quantum cor-
rections.

D. Static limit

In the static limit, the screened potential and the self-
energies do not depend on frequency and the problems
discussed in Sec. II B are absent. In particular, the effec-
tive Hamiltonian does not depend on the energy eigen-
value to be determined. In addition, the Shindo approx-
imation Eq. (4) is exact. Repeating the steps that lead
from the Bethe-Salpeter equation (1) to Egs. (6) and (7)
with a statically screened potential V2 in the effective
interaction kernel K., Eq. (2), gives the static effective
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potential correction as

AV (q,p) =1 - fi(p) —

fe@)] [Vit(a) - Vic (9)]
(25)
and results in a simplified effective wave equation. In the

Debye limit, for instance, it becomes (V.2 Debye poten-
tial)

ek

(o) = [+ 0+ 3 0) - ] w0

+1= £ip) — 1.0)) [ ez VE@Vp+a)

d*q

WO Vi2(9) = ViS(9)] ¥(p+q). (26)

The result for the continuum edge in the Debye limit is

ek
4meg

hwl = SHF (p=0)+SHF (p=0)—

coni (27)
The last term is the shift of the continuum edge proposed
by Ecker and Weizel [23].

E. Imaginary parts

As noted above, the effective wave equation (6) has
real energy eigenvalues because only the Hermitian part
of the plasma Hamiltonian is included and the “imagi-
nary” non-Hermitian part is neglected. This is not a seri-
ous shortcoming however: If an approximate two-particle
description of an ion-electron pair in a plasma is to be
sensible at all, its lifetime must not be too short, i.e
the imaginary parts of its energy eigenvalues must be
small. But then a perturbation calculation of the imagi-
nary parts is adequate.

For the imaginary part of the plasma Hamiltonian [4],
which corresponds to the effective potential correction
Eq. (7), we find

Im HE) (g, p,w) = /d3q’[5(q) —4(q' — @)l[(n{w — [Ei(p) + Ec(p+ q')]/A} + 1)

xImVi[¢',w—Ei(p)/h — Ec(p+q')/h] + (na{w — [Ei(p + q') + Ee(p)]/A} + 1)

xImVilq',w—E;(p+q')/h — E.(p)/H]].

In our work, the imaginary part I" of a bound state energy
that has the real part £ = Aw is calculated as mean
value of this operator for the corresponding eigenstate of
the Hermitian effective Hamiltonian [the solution of the
effective wave equation (6)]

(28)
[
= (4 |ImHE )
d3pd3q ol
(2R ¥*(p) Im H, (q,p, w)¥(p + q). (29)
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III. APPROXIMATE SOLUTION OF THE
EFFECTIVE WAVE EQUATION

A. Expansion in Coulomb eigenfunctions

The effective wave equation (6) refers to an atom at
rest (vanishing total momentum) surrounded by an un-
bounded equilibrium plasma, without externally applied
fields. Accordingly, the atomic effective Hamiltonian is
invariant under rotation and its eigenfunctions can be
chosen as angular momentum eigenfunctions ¥,i,,, as for
any system with spherical symmetry. These wave func-
tions can be expanded as

l,m
Yim ()= 7 4 S (P) (30)

in the Hilbert space basis of spherical Coulomb wave
functions ws, 1m Of the unperturbed hydrogen atom. The
Coulomb eigenfunctions in momentum representation are
the usual spherical harmonics times a “radial” part,
which can be expressed in terms of Gegenbauer’s ultra-
spherical polynomials [24]. We note that the perturbed
energy eigenvalues fuw,; will no longer be degenerate with
respect to I, since the “accidental” degeneracy of the
Coulomb problem is removed by the many-body effects.

For an atom at rest, there is no mixing of different
! and m by the spherically symmetrical plasma Hamil-
tonian. For a moving atom, for which the total atomic
momentum P defines a distinguished direction in space,
the situation is considerably more complicated because [
mixing occurs and the effective atomic Hamiltonian de-
pends on the magnitude of P. Therefore, our work is
restricted to P = 0 like all previous calculations we know.

To be exact, the sum in Eq. (30) has to extend to
n' = oo and, in addition, has to include an integral over
the unperturbed continuum states. In numerical calcu-
lations, only a truncated basis with a finite subset of
basis functions can be processed. The choice of the trun-
cated basis is critical because it must be appropriate for
the function to be approximately expanded (considering,
e.g., symmetry or other general properties). In our work,
we restricted the sum in Eq. (30) to the NV lowest unper-
turbed energy levels and completely neglegted the con-
tinuum integral. To make sure that the results presented
here are not afflicted by this truncation, we did calcula-
tions, for representative plasma temperatures and densi-
ties, for values of N up to 30 (and even up to 50 for the
static cases). For the ground and first few excited states
(n = 1,2,3), N = 10 turned out to be sufficiently large
for the determination of the perturbed energy eigenval-
ues, even if these are close to the (lowered) continuum
edge at higher densities. Still, the complete neglect of all
unperturbed continuum state contributions to ¥, may
be suspected to be risky near the continuum edge. This
question is discussed in more detail in Sec. ITIB.

In the truncated basis of Coulomb eigenstates, the
Hamiltonian is represented by a finite-dimensional N x NV
matrix with N energy eigenvalues and corresponding
eigenstates. Due to the replacement of Aw by the
Coulomb eigenvalue ES in the plasma Hamiltonian used
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for the determination of ¥p;,, with dynamic screening (cf.
Sec. II B above), the effective Hamiltonian is different for
different n (in addition to being different for different 1),
so that only one of the IV eigenvalues and eigenstates for
each ES has physical significance and the whole calcu-
lation has to be repeated to get another eigenvalue. If
strong mixing of different n’ were to occur in the expan-
sion of Ynim, Eq. (30), it would be difficult to identify
this significant eigenstate. The results show, however,
that this is no problem for all cases considered here, even
near the continuum edge, since 1/)SIm always provides the
largest contribution to ¥,im.-

B. Debye potential as a test case

As a test of our method of approximation and espe-
cially of the truncated expansion of the wave function
in terms of only a finite number of bound unperturbed
hydrogen eigenstates (Sec. IIL A), we first computed the
energy eigenvalues for a fictitious isolated hydrogen atom
with a Debye (instead of the Coulomb) potential, i.e.,
omitting all other many-body effects in the wave equa-
tion (26). For this “isolated Debye atom,” which is of-
ten considered as a model for hydrogen atoms in plas-
mas (e.g., [13,25,26] and references given there), Ref. [13]
gives an extensive table of numerical results obtained
in a completely different way by integrating the radial
Schrédinger differential equation. Our calculations did
reproduce all of these results (with the exception of a
minor difference for one eigenvalue close to the contin-
uum).

In particular, both approaches give identical results for
the intersection of bound state energies with the contin-
uum edge (which is invariably situated at zero energy in
this case). At first sight, this is surprising for the ap-
proach used in this work since the perturbed states are
constructed by superposition of only bound unperturbed
states. However, the subspaces of bound and unbound
states are different for the unperturbed atom and the
atom in a plasma (the isolated Debye atom in the special
case under discussion, but the argumentation obviously
holds also for the more complicated cases treated here).
Consider, for instance, a plasma density where all states
except the 1s state have already merged into the con-
tinuum, so that the subspace of bound perturbed states
is one-dimensional and all states that are orthogonal to
115 are unbound perturbed states. Our numerical re-
sults show, for all plasma parameters investigated, that
the perturbed state is always rather close to the unper-
turbed one v, =~ ¥, even near the continuum edge (for
an example with dynamic screening, see Table I). But
then, the bound unperturbed states %S, (n = 2,3,4,...),
which are orthogonal to ¥, are nearly orthogonal to 1,
and therefore must be superpositions mainly of unbound
perturbed states. Moreover, to build the “wave packet”
of the well-localized unperturbed 2s state, say, requires
perturbed states from a broadband of continuous ener-
gies. This shows that our truncated basis of only bound
unperturbed states does in fact contain a broad range of
unbound perturbed states and therefore is appropriate to
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investigate the merging of the bound perturbed nl state
into the continuum provided the number N of unper-
turbed basis states is sufficiently larger than n (which
can be tested by increasing the value of V).

From another point of view, the argumentation given
above requires that the truncated basis of bound un-
perturbed states allows for the (approximate) identifica-
tion of the continuum edge in the spectrum of perturbed
eigenvalues. Since an N-dimensional basis yields only N
discrete perturbed eigenvalues, this might indeed be im-
possible. Our results show, however, a quasicontinuum of
closely spaced eigenvalues if N is larger than the number
of bound states by about 6. Increasing N further adds
more levels at the top of this group and decreases the in-
terlevel distance at the bottom, but results in only minor
changes of the position of the lowest level of the group.
Therefore, this position can be taken as the position of
the continuum edge, within an uncertainty given by the
distance to the next higher level, and the plasma density
at which a bound state merges into the continuum can be
determined with corresponding uncertainty. Again, tests
can be done (and the uncertainty can be diminished) by
increasing the value of N.

In this way, the continuum edge for the isolated Debye
atom was in fact found to be E .,y = 0, the value known
a priori. We also get agreement with Eq. (13) in the
static limit for both the full and the classical dielectric
function. For dynamic screening, things are slightly more
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involved, as discussed in Sec. IV B in connection with the
numerical results.

C. Evaluation of matrix elements

The main numerical task in our approach is the evalua-
tion of the matrix elements of the effective Hamiltonian in
the basis of Coulomb states. With the three momentum
integrals that appear in Eq. (6), the additional frequency
integral in Eq. (7), and another three momentum inte-
grals to obtain the matrix elements, these are originally
given as sevenfold integrals. Using spherical coordinates
for the momentum integrals, the two integrations over
azimuth angles are trivial for a spherically symmetrical
Hamiltonian. A third angle integration can be done ana-
lytically by standard methods based on the properties of
angular momentum eigenstates, i.e., spherical harmonics.
Then, we are left with a fourfold integral of a rather com-
plicated integrand, the evaluation of which would require
quite much computer time.

Therefore, we were lucky to be able to do the fre-
quency integrals that occur in Egs. (7) and (14) analyti-
cally [27,28]. In that part of these integrals which cannot
be directly dealt with by applying the Kramers-Kronig
relation for e 71, it is advantageous to extract the contri-
butions from the pole at w = wg and the pole of the Bose
function at w = 0 in the following way:

P/*wd_wns_wlme-l(k,w):Im/_jgi;rg[ns(w)—@(wo)+ 1 H 1 1]

foo T W—wo w — wo hBwow | | e(k,w) -
T dw Ime~1(k,w) 1 *° dw Ime™t(k,w)
— ! — P —_—— 31
+np(wo) P /_oo T w — wo Afwo /_oo T w (31)

The last two integrals can immediately be evaluated us-
ing the Kramers-Kronig relation for e~1. The first inte-
gral on the rhs is no longer a principal value integral since
its integrand has no poles on the real axis. This integral
can be evaluated by closing the integration path with
an infinite semicircle in the upper half of the complex w
plane and applying the residue theorem to the poles of
the Bose function on the positive imaginary axis. [To get
no contribution from the semicircle, Im e~! was replaced
by Im(e~! — 1) above.] As the result, we obtain

+oo
P / d—wnB—(w)Ime_l(k,w)

— oo T W —Wwo

= np(wo) [Ree ! (k,wo) — 1]
1 -1
" HBwo [e7!(k,0) — 1]
ok — e~ 1 [k,i2m5/(RB)] — 1
200 3 hun)? + ns)?

(32a)
j=1

= np(wo) [Ree ™ (k,wo) — 1]

= e tk,i2mi/(RB)] — 1
- Z BBwo + i 27 ’ (32b)

j=—o0

where e(k,w) = e*(k, —w) is real for purely imaginary
frequencies. The large-j “tail” of the infinite series can
be added up by utilizing the high-frequency asymptotic
expansion of €71, so that only a finite number of terms
have to be evaluated numerically.

The integral given above is often encountered in Green-
function theory of charged particle systems and was
commonly calculated by use of a (single or double)
plasmon-pole approximation or a rational approximation
for Ime™?! in previous work (e.g., [4,12,29,7]). With Eq.
(32), these approximations can be avoided. As another
example of its usefulness, we note that application of
Eq. (32b) in Eq. (11) directly recovers a result for the
retarded one-particle self-energy, which was recently ob-
tained [30] by explicit construction of the analytic contin-
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uation of the self-energy from the imaginary Matsubara
frequencies (for which it is originally defined) to the com-
plex frequency plane.

We emphasize that the validity of Eq. (32a) is not re-
stricted to the RPA dielectric function because its deriva-
tion is based on general principles such as the Kramers-
Kronig relation for e~! (i.e., causality arguments applied
to the formation of the polarization cloud, which screens
an electric charge in a plasma).

In our case, the resonance frequency wy is a function of
momentum g, say, and Eq. (32a) transforms a double in-
tegral over the momentum-frequency plane into a single
integral along some curve in this plane. Ree~?! is sharply
peaked in the immediate vicinity of another curve, the
“plasmon-pole curve” given by Ree(q/A,w) = 0 in com-
bination with small Ime. If the two curves intersect, the
numerical momentum integration has to be done partic-
ularly carefully. In the work reported here, the numerical
integration routine did an extra search for this intersec-
tion, but never found one for the atomic and plasma pa-
rameters investigated.

Finally, we annotate that only one integral has to be
evaluated numerically to calculate the effective Hamilton
matrix in the static limits for the full and the classical
dielectric function.

IV. RESULTS AND DISCUSSION

We did rather extensive numerical computations for
the continuum edge and bound states from 1s to 4f for
B = 1/(ksT) = 1, 2, 4, 8, and 16 Ry~! [31] (corre-
sponding to temperatures T of about 160000 K, 80 000
K, 40000 K, 20000 K, and 10000 K), with the plasma
density ranging from very low values up to and beyond
the value where the Mott transition of the 1s state takes
place. We note that our high-density results for the lower
of these temperatures are uncertain because the plasma
becomes degenerate (and our approximations cease to be
valid) in the vicinity of the Mott transition density.

The computations were done for the dynamic classi-
cal and full dielectric functions and their static limits
by considering the following four cases: static screening;
namely, (i) Eq. (24), the (classical) Debye approxima-
tion ep(k), together with wave equation (26) and Eq.
(27) for the continuum edge (“Debye limit”), and (ii)
Eq. (23), the static limit of the full RPA dielectric func-
tion eq(k) (including additional quantum corrections),
together with the appropriate static limits of the gen-
eral wave equation (6) and of Eq. (13) for the continuum
edge (“static full screening”); and dynamic screening [in
Eq. (7) for AVSE, to be used in the effective wave equa-
tion (6) and in Eq. (14) for the corresponding continuum
edge], namely, (iii) the classical RPA dielectric function
ea(k,w), Eq. (22) (“dynamic classical screening”), and
(iv) the full RPA dielectric function e(k,w), Eq. (19)
(“dynamic full screening”).

As a general observation, the hydrogenic energy levels
in a plasma remain practically unshifted if the plasma
density is increased at constant temperature and show
a stronger downward shift only near the crossover with
the lowered continuum edge. The weak density depen-
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dence results from compensation of opposite shifts caused
by the different many-particle effects, as discussed in
Refs. [4,12,20]. The compensation takes place between
the Pauli blocking and the Hartree-Fock self-energy and
between the dynamically screened effective potential cor-
rection and the dynamic (Montroll-Ward) self-energy.
While the (negative) self-energies lead to a lowering of
the energy levels, Pauli blocking and screening reduce the
atomic ion-electron interaction and lead to an increase
of the levels. With increasing density, the self-energies
start to dominate and eventually produce the stronger
decrease of energy levels near the intersection with the
continuum edge. This behavior is found for all levels, but
already at lower densities for higher excited levels.

For the continuum edge, no such compensation is ef-
fective since it is determined by the self-energies alone,
according to Eq. (13). Therefore, the continuum edge
decreases more steeply with increasing density than the
bound energy levels and these merge into the continuum
one by one in order of decreasing main quantum number
n. Finally, even the 1s ground state energy level crosses
the continuum edge, which is known as the Mott transi-
tion. Beyond the Mott transition, bound states cease to
exist in a hydrogen plasma.

A. Static screening

We first investigated the hydrogen energy levels for
static screening, where calculations are less involved than
for dynamic screening and some results for the Debye
limit are already available [16]. In the static case, the
energy eigenvalues are real and there is no damping or
level broadening.

Results for two temperatures are compared in Fig. 1
for the 1s and 2s states, respectively, and the continuum
edge. The continuum-edge curves shown in the figures
were computed according to the static limit of Eq. (13)
[i.e., Eq. (27) for the Debye limit]. The continuum edge
was also determined from the quasicontinuum solutions
of the static limit of the effective wave equation, as dis-
cussed in Sec. III B, and perfect coincidence was found
within our numerical accuracy. For static full screening,
case (ii), the energy-level shifts are slightly smaller than
those for Debye screening, case (i), the differences being
more pronounced at the lower temperature.

B. Dynamic screening

In the calculations for dynamic screening, the approxi-
mations discussed in Sec. II B were made, i.e., the quasi-
particle energies were replaced by the kinetic energies
and Aw was replaced by the unperturbed Coulomb eigen-
values ES in the effective Hamiltonian, but E.ons was
self-consistently determined by iteration.

With static screening, the effective Hamiltonian does
not depend on the perturbed eigenvalue and its diagonal-
ization gives, at any density, a whole set of energies for
bound and quasicontinuum states at once. In contrast,
the effective Hamiltonian for dynamic screening, calcu-
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FIG. 1. Energies E of the continuum edge (cont.) and
the 1s and 2s bound states as functions of the electron
density m. for static screening. Solid lines, static limit
est of the full dielectric function (with quantum correc-
tions), case (ii); broken lines, static Debye limit ep of clas-
sical dielectric function, case (i). Results are shown for
B = 1Ry ' (87! = kgT =~ 13.6eV, T ~ 157900 K) and
B=8Ry ™! (ksT ~ 1.7V, T ~ 19740 K).

lated with 7uw = ES, yields only one perturbed eigen-
value E,; = fwpn = ES, while its other eigenvalues have
no physical significance. The only exception would be
another energy level with E,,,; = E,;. According to our
numerical results, no such level crossing occurs between
bound perturbed states. However, if the bound state un-
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der consideration merges into the quasicontinuum as the
plasma density is increased, a level crossing takes place
with the lowest of the quasicontinuum energy levels, so
that the continuum edge can be determined at that par-
ticular density. As a typical example, Table I presents
the perturbed 1s state and the two lowest-lying of the
quasicontinuum states [with the expansion according to
Eq. (30) done up to n’ = 10] for 3=2Ry~! at densities
clearly below, slightly below, and slightly above the Mott
transition density, which correspond to xkag = 0.5, 0.6,
and 0.65, respectively (ap =~ 53 pm Bohr radius). It is
obviously no problem to identify the two different types
of states.

In Figs. 2 and 3, which show some of our results,
bound energy levels are always drawn up to this density
where they merge into the continuum. These end points
should lie on the curve for the continuum edge, but are
always found to be slightly below (with dynamic screen-
ing). This is due to the different treatment of £ = Aw
for bound states or the continuum edge, as shown by
test calculations we did for some plasma densities and
temperatures. On the one hand, we did not replace fw
by ES for the nl bound state, but extended our calcula-
tions to determine the self-consistent solution Aw = E,,;;
this did bring the end points of the bound-level curves
up onto the continuum-edge curve. On the other hand,
we formally replaced Econy by ES in the calculation of
continuum curves [rhs of Eq. (14)]. This brought the con-
tinuum curves down to the end points of the bound-level
curves in the figures (but cannot be used for lower and
higher densities). Thus there is no indication in the frame
of our approximations that Eq. (13) might not yield the
correct continuum edge, contrary to conclusions drawn
in the frame of different approximations [7].

Figure 2 presents the energies of the 1s and 2s states
and of the continuum edge as functions of plasma density,
at fixed temperatures of about 160000 K and 20000 K,
for approximations (ii) and (iv), i.e., the static and the
dynamic full dielectric function. Inspection of this figure

TABLE 1. Perturbed 1s state and lowest-lying quasicontinuum states for plasma densities clearly below, slightly below, and
slightly above the Mott density [3 = 2 Ry ™!, full dynamic RPA dielectric function, case (iv)]. Perturbed states are approximated

as linear combinations ¢4 + - - -

+ c1095y, of unperturbed Coulomb states; cf. Eq. (30).

E (Ry) C1 C2 C3 Caq Cs Ce C7 Cs Co C10
k = 0.5a5", n. = 1.68 x 10%? cm™®
—0.9157 0.0003 0.0039 —0.0168 0.0687 —0.1952 0.4175 —0.5958 0.4344 0.2336 —0.4293
—0.9185 —0.0002 —0.0000 —0.0041 0.0087 —0.0318 0.0763 —0.2162 0.4662 —0.7084 0.4767
—1.0908 0.9811 —0.1875 —0.0337 —0.0215 —0.0155 —0.0121 —0.0099 —0.0086 —0.0076 —0.0068
k= 0.6a;", n. = 2.42 x 10** cm™®
—1.1024 0.0002 —0.0022 0.0077 —0.0401 0.1342 —0.3539 0.5934 —0.5045 —0.1994 0.4568
—1.1059 0.0017 —0.0009 —0.0032 0.0056 —0.0236 0.0596 —0.1919 0.4522 —0.7180 0.4890
—1.1341 0.9439  —0.3270 0.0139 —0.0280 —0.0172 —0.0143 —0.0122 —0.0122 —0.0121 —0.0137
Kk = 0.65a;", n. = 2.84 x 10%% cm™?
—1.1644 0.8104 —0.4393 0.1970 0.0082 —0.2268 —0.1410 0.0174 0.1082 0.1296 0.1057
—1.1984 0.0007 0.0015 —0.0054 0.0311 —0.1119 0.3268 —0.5871 0.5345 0.1794 —0.4659
—1.2023 0.0012  —0.0001 0.0026  —0.0056 0.0248  —0.0562 0.1804 —0.4396 0.7215  —0.4998
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(and of the other data we computed) shows that there
is no simple characterization of the differences between
the effects of static and dynamic screening, which depend
on plasma density and temperature as well as the main
quantum number n, concerning not only their magnitude
but also their sign. As an example, the Mott density
(where the 1s state merges into the continuum) is larger
with static screening than with dynamic screening at T' =
160000 K, but smaller at 7' = 20000 K (Fig. 2).

The general conclusion to be drawn from these results
is that the effects of dynamic screening have to be in-
cluded in reliable calculations of the plasma effects on
atomic structure. The use of static screening greatly fa-
cilitates calculations, but may lead to substantial errors
(cf. Fig. 2 and Table II, for example). However, even if
our results emphasize the importance of dynamic screen-
ing, they indicate as well that the corresponding more
complicated calculations can probably be done very ac-
curately by low-order perturbation theory [32,33] for the
bound states since the perturbed states remain close to
the unperturbed ones even near the Mott density.

As compared to the differences of static vs dynamic
screening, the differences brought about by use of the
dynamic classical instead of the dynamic full dielectric
function, cases (iii) and (iv) above, are small and similar
to the differences found between the corresponding static
limits: the full dielectric function, with quantum effects
included, leads to slightly smaller level shifts, with some-
what larger effects at lower temperatures. As a qualita-
tive difference of these two cases at high plasma densi-
ties, the 1s-level shift is smaller for higher than for lower
temperatures with classical screening, while this order is
reversed with full screening [34].

At low plasma densities, where perturbation theory
[32,33] is certainly appropriate, the level shifts are found

to be proportional to 2,

1e2ag
E. — E,? = —Qn = K2
2 4meg

= —an ai k*Ry, (33)

i.e., they are proportional to the density at fixed temper-
ature. In Table II, the coefficients «,,; for some hydrogen
energy levels are given, as found for approximations (i)-
(iv). These data also exemplify the conclusions stated
above.

We emphasize that Eq. (33) holds for neutral hydro-
gen atoms. In contrast, level shifts for hydrogenlike ions
such as He II are expected to be proportional to k at
low densities [35,36]. However, this lowest-order contri-
bution to the level shifts is the same for all bound states
because it is the self-energy shift experienced by the ion
as a whole (due to its net electrical charge) on immer-
sion in a plasma. Therefore, this contribution cancels if
line shifts are calculated as level shift differences, so that
line shifts are in general found to be proportional to the
plasma density (i.e., %) for both hydrogenlike ions and
hydrogen atoms.

For dynamic full screening, case (iv), Fig. 3 shows the
energies F for the 1s and 2p states and the continuum
edge as functions of k (instead of n.) for different tem-
peratures. This kind of representation would be fully
appropriate for the model of the isolated Debye atom
(Sec. IIIB), for which all density and temperature de-
pendence enters through k. For cases (i) and (ii), i.e.,
static screening inclusive of the additional many-particle
effects, the corresponding curves for different tempera-
tures are still found to be practically coincident, with
slightly larger high-density level shifts for lower than for
higher temperatures. The large spread with temperature
of the curves in Fig. 3 demonstrates the additional tem-
perature dependence that is brought about by dynamic
screening. With dynamic full screening, the level shifts
(in particular the shifts of the continuum edge) for differ-
ent temperatures are distinctly different at fixed x and
they are larger for higher than for lower temperatures.

The imaginary parts I' of the bound state energies,
which give the decay rates (damping) due to interaction
with the surrounding plasma, are also shown in Fig. 3.
They are found to be small throughout (so that their
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TABLE II. Factors of proportionality an; according to Eq. (33), Eni — ES = —anais®Ry,
for the four investigated levels of approximation of the RPA dielectric function: (i) static Debye
screening ep, i — 0 and w — 0; (ii) static full screening €5, w — 0; (iii) classical dynamic screening
€a, ki — 0; and (iv) full dynamic screening . Range of validity £ < 107 %ag .

Case
B8 Ry ™) T (K) nl (i) ep (ii) est (iii) ea (iv)
1s 1.482 1.169 1.276 1.097
1 2s 6.319 5.905 25.30 24.87
157900 2p 5.273 4.867 17.72 17.31
4f 18.43 18.00 237.1 236.6
1s 1.446 1.058 0.6561 0.4931
2 2s 6.266 5.699 13.83 13.31
78950 2p 5.205 4.649 9.684 9.220
4f 18.40 17.79 129.9 129.3
1s 1.439 0.9751 0.3448 0.2064
4 2s 6.201 5.438 7.407 6.866
39470 2p 5.142 4.400 5.197 4.723
4f 18.35 17.49 70.46 69.46
1s 1.451 0.9132 0.1999 0.082 80
8 2s 6.127 5.118 3.916 3.409
19740 2p 5.092 4.127 2.763 2.340
4f 18.29 17.09 37.13 36.23
1s 1.468 0.8617 0.1316 0.03299
16 2s 6.058 4.759 2.091 1.658
9870 2p 5.060 3.849 1.516 1.156
4f 18.21 16.57 19.28 18.19

calculation by means of perturbation theory is justified
a posteriori), with a rather steep increase of magnitude
just before the bound state merges into the continuum.

Finally, the Mott density, at which the 1s state merges
into the continuum, is shown as a function of temperature
in Fig. 4. For cases (i) and (ii) with static screening,
there are only small deviations from the result found for
the isolated Debye atom [13], where the Mott transition
occurs at a Debye length of

rMott ~ 0.84a0 (34)

and the Mott density is proportional to the temperature
(straight line in Fig. 4). In contrast, the Mott density
with dynamic full screening, case (iv), has a maximum at
a temperature of about 50 000 K and decreases with fur-
ther increasing temperature. As we did only investigate
temperatures up to 160000 K, we cannot decide whether
the Mott density continues to decrease at still higher tem-
peratures or eventually starts to increase again.

As set forth in Sec. IIIC, our calculations with dy-
namic screening could be done without the introduction
of another approximation for Ime~?! in order to obtain an
analytical result for the frequency integral in Eq. (7). In
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FIG. 4. Mott density (where the 1s state merges into the
continuum) as a function of temperature. Solid line, full dy-
namic RPA dielectric function e, case (iv); broken line, Mott
condition Eq. (34).

Ref. [29], a double plasmon-pole approximation was em-
ployed for this purpose. Comparing corresponding low-
density results, this approximation is found to work quite
well for excited levels since it yields level shifts that do
not deviate by more than some 10% from the shifts cal-
culated here [34]. For the 1s level, which is much less
shifted, we obtain only about one-half the shift found in
Ref. [29].

Concerning comparison with experiment, direct mea-
surements of the level shifts and widths calculated here
are not available since they would have to be done relative
to some energy level of an unperturbed atom, the contin-
uum edge of which defines energy zero. However, differ-
ences of perturbed energies can be measured as spectral
line shifts (and sums of the imaginary parts of energies
as linewidths) if the vertex contributions (interference
terms) mentioned in the Introduction are not too impor-
tant, which account for statistically correlated perturba-
tions of the upper and lower level of a spectral line. They
are least important for the Lyman lines np <> 1s because
the 1s state is much more tightly bound than the excited
states. This is also shown by our results, which predict
a 1s shift that is only a few percent of the np shifts at
low plasma densities (Table II). Since both shifts are to-
ward lower energies, our results predict redshifts of the
Lyman lines, proportional to the plasma density at low
densities. This is in accordance with the measured shifts.
However, the calculated shifts are an order of magnitude
larger than the measured ones [37-39]. Moreover, the
measured Lyman line shifts are a few percent at most
of the measured widths, while the calculated imaginary
parts of the energy eigenvalues are distinctly smaller than
the real parts. Disregarding the vertex contributions, the
situation is similar for the Balmer lines [40—44].

Thus we are forced to conclude that one or more of
the approximations we used are not reliable. One of
these might be the approximation of the effective two-
particle interaction Kj;. by the screened potential Ve,
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Eq. (2). As a result of this, the effective potential cor-
rection AVSE is found to be caused by plasmon-induced
virtual bound-free transitions [resonance denominator of
Eq. (7) combined with the plasmon peak of Ime 1], while
virtual bound-bound transitions are not included. How-
ever, calculations employing the double plasmon-pole ap-
proximation show [29] that their inclusion in AVSE leads
to still larger calculated line shifts and does not remove,
but even increases, the discrepancies with experiment.

Therefore, we believe that the discrepancies are mainly
due to an inappropriate treatment of the ion contribu-
tion to the electronic self-energy, which is very large in
the RPA for m; > m,. [4,15] and small momentum, and
probably requires an improved approximation. We note
that spectral line broadening calculations [45] restrict the
Green-function treatment to plasma electrons for this
reason and employ a statistical ion microfield distribu-
tion (with corresponding static Stark splitting of energy
levels) for the ion contribution. This split approach is not
able, however, to account for thermal ion motion (“ion
dynamic effects”).

V. CONCLUSIONS

In this work, we determined two-particle (hydrogen-
atom) states in an equilibrium hydrogen plasma by
solving the effective wave equation, which can be de-
rived from the Bethe-Salpeter equation by means of
the quantum statistical Green-function technique. In
this wave equation, the influence of the plasma is taken
into account in terms of the Hartree-Fock and dynamic
Montroll-Ward self-energies, Pauli blocking factors, and
a dynamic effective correction of the Coulomb interac-
tion potential. The main approximations used in its
derivation are a screened-ladder approximation by tak-
ing the effective ion-electron interaction kernel K;. to
be the dynamically screened potential V2, Eq. (2), and
the Shindo approximation, Eq. (4), to replace a two-
frequency Green function by a single-frequency one. In
correspondence to the first approximation, we also ne-
glected contributions to the single-particle self-energies
beyond the Montroll-Ward contribution [the V*® approx-
imation, Eq. (10)]. Plasma-specific effects are incorpo-
rated into the effective wave equation through the plasma
dielectric function that we used in the RPA, Eq. (17).

The resulting atomic “plasma Hamiltonian” being non-
Hermitian, atomic states in a plasma have complex en-
ergies and are no longer stationary, but decay. To deter-
mine these energies, we first calculated eigenvectors and
real eigenvalues of the Hermitian part of the Hamiltonian
according to Eq. (6), neglecting higher-order density con-
tributions (except those contained in the dielectric func-
tion) and considering only the case of an atom with zero
center-of-mass momentum. Then we used these numer-
ical results to determine the imaginary parts of the en-
ergies by perturbation theory. With an analytical result
Eq. (32) for the frequency integrals that occur in the
effective potential correction Eq. (7), we could do the
calculations with the full dynamic RPA dielectric func-
tion (or its classical limit) and avoid the plasmon pole or
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rational approximations employed in previous work. For
comparison, we also determined the real energies result-
ing from static screening.

Our calculations show that there are distinct differ-
ences between the results obtained with static and with
dynamic screening, in particular with respect to the tem-
perature dependence of energy level shifts and to the
Mott densities, where the 1s state merges into the contin-
uum. In general, the effects of dynamic screening there-
fore have to be included in reliable calculations of the
plasma effects on atomic structure. Dynamic screening
leads to more effective compensation between self-energy
and screening effects, so that level shifts are smaller than
for static screening. As a consequence of our approx-
imations, the dynamic effective potential correction is
due only to plasma induced virtual bound-free transi-
tions, while the corresponding contribution of bound-
bound transitions is missing and should be included into
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an improved calculation.

Calculated shifts of the first Lyman and Balmer spec-
tral lines are much larger than the measured shifts, and
also larger than the calculated widths, contrary to ex-
perimental results. We attribute this to an overestimate
of the ion contribution to the electronic self-energy for
large ion-to-electron mass ratios. In this regard, consis-
tent further improvement of the Green-function approach
is required.
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